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Abstract. Stochastic evolution of Chemical Reactions Networks (CRNs)
over time is usually analysed through solving the Chemical Master Equa-
tion (CME) or performing extensive simulations. Analysing stochasticity
is often needed, particularly when some molecules occur in low numbers.
Unfortunately, both approaches become infeasible if the system is com-
plex and/or it cannot be ensured that initial populations are small. We
develop a probabilistic logic for CRNs that enables stochastic analysis of
the evolution of populations of molecular species. We present an approx-
imate model checking algorithm based on the Linear Noise Approxima-
tion (LNA) of the CME, whose computational complexity is independent
of the population size of each species and polynomial in the number of
different species. The algorithm requires the solution of first order poly-
nomial differential equations. We prove that our approach is valid for
any CRN close enough to the thermodynamical limit. However, we show
on four case studies that it can still provide good approximation even for
low molecule counts. Our approach enables rigorous analysis of CRNs
that are not analyzable by solving the CME, but are far from the deter-
ministic limit. Moreover, it can be used for a fast approximate stochastic
characterization of a CRN.

1 Introduction

Chemical reaction networks (CRNs) and mass action kinetics are well stud-
ied formalisms for modelling biochemical systems . In recent years, CRNs have
also been successfully used as a formal programming language for biochemi-
cal systems . There are two well established approaches for analyzing chemi-
cal networks: deterministic and stochastic. The deterministic approach models
the kinetics of a CRN as a system of ordinary differential equations (ODEs)
and represents average behaviour, valid in the thermodynamic limit [8]. The
stochastic approach, on the other hand, is based on the Chemical Master Equa-
tion (CME) and models the CRN as a continuous-time Markov chain (CTMC)
[7]. The stochastic behavior can be analyzed by stochastic simulation [9] or by
exhaustive probabilistic model checking of the CTMC, which can be performed,
for example, by using PRISM [12].
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Exhaustive analysis of the CTMC is able to find the best- and worst-case
scenarios and is correct for any population size, but suffers from the state-space
explosion problem and can only be used for relatively small systems. In contrast,
deterministic methods are much more robust with respect to state-space explo-
sion, but unable to represent stochastic fluctuations, which play a fundamental
role when the system is not in thermodynamic equilibrium.

Contributions. In this paper we develop a novel approach for analysing
the stochastic evolution of a CRN based on the Linear Noise Approximation
(LNA) of the CME. We formulate SEL (Stochastic Evolution Logic), a prob-
abilistic logic for CRNs that enables reasoning about probability, expectation
and variance of linear combinations of populations of the species. Examples of
properties that can be specified in our logic are shown in Example 1. We pro-
pose an approximate model checking algorithm for the logic based on the LNA
and implement it in Matlab and Java. We demonstrate that the complexity of
model checking is polynomial in the initial number of species and independent of
the initial molecule counts, thus ameliorating state-space explosion. Further, we
show that model checking is exact when approaching the thermodynamic limit.
Though the algorithm may not be accurate for systems far from the determin-
istic limit, this generally happens when the populations are small, in which case
the analysis can be performed by transient analysis of the induced CTMC [11].
Our approach is essential for CRNs that cannot be analyzed by (partial) state
space exploration, because of large or infinite state spaces. Moreover, it is useful
for a fast (approximate) stochastic characterization of CRNs, since solving the
LNA is much faster than solving the CME [6]. We prove asymptotic correct-
ness of LNA-based model checking and show on three examples that it is still
possible to obtain very good approximations even for small population systems,
comparing with standard uniformisation [11] and statistical model checking im-
plemented in PRISM.

Related work. Bortolussi et al. [1] uses the Central Limit Approximation
(CLA) (essentially the same as the LNA) for checking restricted timed automata
specifications and they assume fixed population size. Wolf et al. [16] develop a
sliding window method to approximately verify infinite-state CTMCs, which
applies to cases where most of the probability mass is concentrated in a confined
region of the state space. This method applies to the induced CTMC, but require
at least partial exploration of the state space, and is thus not immune to state-
space explosion

Structure of the paper. In Section 2 we summarise the deterministic and
stochastic modelling approaches for CRNs, and in Section 3 we describe the
Linear Noise Approximation method. Section 4 introduces the logic SEL and
the corresponding model checking algorithm based on the LNA. In Section 5 we
demonstrate our approach on three networks taken from the literature. Section 6
concludes the paper.



2 Chemical Reaction Networks

A chemical reaction network (CRN) C = (A, R) is a pair of finite sets, where
A is the set of chemical species and R the set of reactions. |A| denotes the
size of the set of species. A reaction 7 € R is a triple 7 = (r;,pr, k;), where
rr,pr € Nl and k. € Ryg. 7, and p, represent the stoichiometry of reactants
and products and k;, is the coefficient associated to the rate of the reaction;
its dimension is s~'. We often write reactions as A\; + g —*1 2\, instead of
= ([1,0,1]7,[0,2,0]T, k1), where -7 indicates the transpose of a vector. We
define the net change associated to a reaction 7 by v, = p, — r,. For example,
for 7 as above, we have v,, = [-1,2,—1]T.

We make the assumption that the system is well stirred, that is, the prob-
ability of the next reaction occurring between two molecules is independent of
the location of those molecules. We consider fixed volume V' and temperature;
under these assumptions a configuration or state x € NI of the system is given
by the number of molecules of each species. We define [z] = &, the vector of
the species concentration in x for a given N, where N =V - N4 is the volumet-
ric factor, V is the volume of the solution and N4 is Avogadro’s number. The
physical dimension of N is Mol~! - L, where Mol indicates mole and L is litre.
Given \; € A then #)\;_x € N represents the number of molecules of \; in x and
[Ai]-z € R the concentration of )\; in the same configuration. In some cases we
elide x, and we simply write #\; and [);] instead of #\;_x and [A;]-x. They are
related by [\;] = % The dimension of [)\;] is Mol - L~1.

The propensity a,, r of a reaction 7 in terms of the number of molecules is a
function of the current configuration of the system z such that a, ,(x)dt is the
probability that a reaction event occurs in the next infinitesimal interval dt. In
this paper we assume as valid the stochastic form of the law of mass action, so
the propensity rates are proportional to the number of molecules that partici-
pate in the reaction. Stochastic models consider the system in terms of numbers
of molecules, while deterministic ones, generally, in terms of concentrations, and
the relationship is as follows. For a reaction 7 = (r,,pr, k. ), given the configu-

ration z and 7, ;, the i-th component of r,, then a. ,(r) = k; H‘ii‘l ([Ni]-z)™
is the propensity function expressed in terms of concentrations as given by the
deterministic law of mass action. It is possible to show that, for any order of reac-
tion, ay, - (z) = Nae - (z) if N is sufficiently large. Note that . - is independent
of N. In this paper we are interested only in finite time horizon, because of the
problematic character of studying solutions of ODEs for infinite time horizon.

Ezample 1. Consider the CRN C = ({\1, A2, A3}, R), where R = {(A; + Ao =19
A2+ A2), (A2 + A3 =10 A3 + A3)}, with initial conditions #\; = 98, #\y =
1,#A3 = 1, for a system with N = 1000. Figure 1 plots the expectation and
standard deviation of population sizes. We may wish to check if the maximum
expected value of #)\; remains smaller than 75 molecules during the first 2sec.
However, the system is stochastic, so we also need to analyse whether the vari-
ance is limited enough when #M\s reaches the maximum. Sometimes, analysis
of first and second moments does not suffice, so it could be of interest to check



the probability of some events, for instance, is the probability that, between
t1 = 0.5sec and ty = 1.0sec, #Ao — (#X1 + #A3) > 0 greater than 0.67

Deterministic Semantics. Let C' =
(A,R) be a CRN. The deterministic
model approximates the concentration of
the species of the system over time as a E
set of autonomous polynomial first order —: =]
differential equations: ]

do(t)

20— Fa) 1)
F@() = iy Ure (2(1))
and a.-((t)) = k, [1\2) @;(t)". Func-
tion @ : Rso — Rl describes the be-
haviour of the system as a set of deter-
ministic equations assuming a continuous
state-space semantics, therefore ®(t) €
R4l is the vector of the species concen-
trations at time ¢t. Assuming ¢y = 0, the initial condition is #(0) = [z], expressed
as a concentration. Note that F(P(t)) is Lipschitz continuous, so @ exists and is
unique [7].

Stochastic Semantics. CRNs are well represented by CTMCs, whose tran-
sient analysis can be performed via the Chemical Master Equation (CME) [14].

Fig. 1: Expected number and stan-
dard deviation of species of the CRN
of Example 1 for the given initial con-
ditions, calculated by simulating the
CME.

Definition 1 Given a CRN C = (A, R) and the volumetric factor N, we define
a time-homageneous CTMC (XM (t),t € Rsq) with state space S = NI, Given
xg € S, the initial configuration of the system, then P(X™(0) = x¢) = 1. The
transition rate from state x; to state x; is defined asr(z;, x;) = Z{Telej:mi+vT} Nag - (z;).

XN (t) describes the stochastic evolution of molecular populations of each species
at time ¢. For 2 € S, we define P®)(z) = P(XN(t) = 2| X(0) = x¢), where z is
the initial configuration. The CME describes the time evolution of X* as:

4 (P(t)(x) ) = Z{Nac,r(x —v)PY(x —v,) — Nag - (x) PP (z).} (2)

dt TER

The CME can be equivalently defined in terms of the infinitesimal generator ma-
trix, which admits computing an approximation of the CME using, for example,
the sliding window method [16].

We also define the CTMC (X];](t),t € R>g) with state space S = QII. If
X~ (0)

[zo] € S is the initial configuration, then P(=5— = [z¢]) = 1. The transition
rate from state [z;] to [x;] is defined as r([z;], [z;]) = Z{TERI[%}:[@H%} Noe,r(x;).
% is the random vector describing the system at time t in terms of concen-

trations. In [7] it is proved that lim sup ||% — &(t')]|| = 0 almost surely
N—oo t/'<t



for every time t. This explains the relationship between the two different seman-
tics, where the deterministic solution can be viewed as a limit of the stochastic
solution, valid when close enough to the thermodynamic limit.

3 Linear Noise Approximation

The solution of the CME can be computationally expensive, or even infeasible,
because the set of reachable states can be huge or infinite. The Linear Noise
Approximation (LNA) has been introduced by Van Kampen as a second order
approximation of the system size expansion of the CME [14]. Since stochastic
fluctuations depend on NNV, and specifically, for average concentrations, are of the
order of N2 [6], to derive the expansion Van Kampen assumes that:

XN(t) ~ NO(t) + N2 Z(t) (3)

where Z(t) = (Z1(t), Za2(t), ..., Z4)) is the random vector, independent of N,
representing the stochastic fluctuations, @(t) is given by the solution of Eqn (1)
and X (¢) is the random vector of Definition 1. Using this substitution in the
system size expansion and then truncating at the second order, the probability
distribution of Z(t) is found to be given by the following linear Fokker-Plank
equation [6]:
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where G(P(t)) = Y cp U0 e - (D(t)) and F;(P(t)) is the j—th component
of F(®(t)). The solution of Eqn (4) gives a Gaussian process. For every time ¢,
Z(t) has a multivariate normal distribution, whose expected value and covariance
matrix are the solution of the following equations [6]:
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where Jp(P(t)) is the Jacobian of F(P(t)). We consider as initial conditions
E[Z(0)] =0 and C[Z(0)] = 0. This means that E[Z(t)] =0 for every t.

It is possible to justify the hypothesis (3) noting that in the lowest order the
CME expansion reduces to Eqn (1), and with the following theorem by Kurtz:

Theorem 1. [7] Consider the subset E C RIAl on which are defined the propen-

sity functions .. .. Let ZN (t) be the random vector given by Z™ (t) = N2 (%—

&(t)). Suppose that > |v.2| sup aer(X) < 0o for each compact K C E, and
TER

that, for N — oo, ZN(0) = Z( ), then ZN(t) converges in distribution to Z(t).



The LNA thus permits approximation of the probability distribution of X (¢)
with the probability distribution of YN () = N&(t) 4+ Nz Z(t). It is easy to show
that Y™ (¢) has a Gaussian distribution; indeed, Z(t) is Gaussian distributed,
and N and &(t) are deterministic.

To compute the LNA it is necessary to solve O(|A|?) first order differential
equations, but the complexity is independent of the initial number of molecules
of each species. Therefore, one can avoid the exploration of the state space that
methods based on uniformisation rely upon.

Theorem 1 alone only guarantees convergence in distribution. However, in
[15], LNA is derived as an approximation of the Chemical Langevin Equation
(CLE) [8], rather than system size expansion. This shows that LNA is valid for
every real chemical system close enough to the thermodynamical limit, at least
for a limited time. Thus, LNA is exact in the limit of high populations, but can
also be used for small populations if the behaviour is not too far from the deter-
ministic limit, taking into account the continuous nature of the approximation
and Gaussian assumptions on the noise.

3.1 Probabilistic analysis of CRNs

We have shown that X~ can be approximated by YN (t) = N&(t) + N2 Z(t),
where YV (¢) has a multivariate Gaussian distribution, so it is completely charac-
terized by its expected value and covariance matrix, whose values are respectively
E[YN(t)] = N®(t) and C[YN(t)] = N%C[Z(t)]N% = NC[Z(t)].

Since YV has a multivariate normal distribution then every linear combina-
tion of its components is normally distributed. Therefore, given B = [by, ba, - - - , bj 4]
where by,ba,...,b 4 € Z, we can consider the random variable BYN(t), which
defines a linear combination of the species at time t. For every t, BY N (t) is a
normal random variable, whose expected value and variance are

E[BY™(t)] = BE[Y" ()] (7)
CIBY™(t)] = BO[Y™N (1) BT (8)
For a specific time ty, it is possible to calculate the probability that BY ™ (t;)

is within a set I of closed, disjoint real intervals [l;,u;], where l;,u; € R U
{+00, —00}. This probability 2y~ p r(tx) is given by

Uq

Qyvprte)= Y | glal BIBYN ()], CBY N (t)])dx )
[Li,ui]€T ],

where g(z|EV,0?) is the Gaussian distribution with expected value EV and
covariance o2. We recall that it is possible to find numerical solution of Eqn (9)
in constant time using the Z table [13].

Ezxample 2. Consider the CRN of Example 1, then we can obtain the probability
that #X\ — 2#X3 is at least 10 at time 20 by defining B’ = [1,0,—2], I’ =
{[10, 4+-00]} and calculating 2y~ g/ /(20).



The following theorems are consequences of results in [15], which can be gener-
alized for reactions with a finite number of reagents and products. They show
asymptotic pointwise convergence of expected value, variance and probability.

Theorem 2. Let C = (A, R) be a CRN. Suppose the solution of Eqn (6) is
bounded, then, approaching the thermodynamic limit, for any finite instant of
time t;

A 192y~ p.1(t:) = Qxn g1 ()] =0, (10)
=

where QXN .B,1(ti) is the probability that B(XN) is within I at time t;.

Theorem 3. Suppose the solution of Eqn (6) is bounded, then, approaching the
thermodynamic limit, for any finite instant of time tj

Jim [[C[BY N (1) — C[BXN ()] = 0 (11)
Jim (| BBYY (1) - BIBX™ ()] = 0. (12)

To solve the differential equations (5) and (6), it is necessary to use a numeri-
cal method such as adaptive Runge-Kutta algorithm. This yields the solution for
a finite set of sampling times X = [t1, .. t‘g}ve R|2|, where t; < ... <t < ... <
t|s| and |X] is the sample size. Assuming Y is separable, that is, it is possible
to completely define the behavior of YV by only considering a countable number
of points, we can calculate {2y~ p; for any point in X' and if points are dense
enough then this set exhaustively describes the probability that BXY is within
I over time. This restriction is not a limitation since for any stochastic process
there exists a separable modification of it [10].

4 Stochastic Evolution Logic (SEL)

Let C = (A, R) be a CRN with initial state zg, in a system of size N. We now
define the logic SEL (Stochastic Evolution Logic) which enables evaluation of
the probability, variance and expectation of linear combinations of populations
of the species of C.

The syntax of SEL is given by

n::PNp[B,I][tth] | QNU[B][tl,tg] | mAm | mVn

where Q = {supV, infV, supE,infE}, ~= {<,>}, p € [0,1], v € R, B € ZI4I,
I = {[ll,ul] U“U,L eRU [+OO, —OO] A [lz,uz] N [lj,ui] = @, ) 7£ j} and [tl,tg] is
a closed interval, with the constraint that ¢; < t5 and t1,t; € R. If t; = t5 the
interval reduces to a singleton.

Formulae 7 describe global properties of the stochastic evolution of the sys-
tem. (B, I) specifies a linear combination of the species of C' and a set of intervals,
where B € ZI4 is the vector defining the linear combination and I represents



a set of disjoint closed real intervals. P.,[B, ], ., is the probabilistic oper-
ator, which specifies the probability that the linear combination defined by B
falls within the range I over the time interval [t1,t2]. supE,infE,infV, supV
respectively yield the supremum and infimum of expected value and variance of
the random variables associated to B within the specified time interval.

Ezxample 3. Consider the CRN of Example 1. Checking if the variance of #\; re-
mains smaller than K within [t;, ;] can be expressed as supV<k, [[1,0,0]](1; 1,]-
Another example is checking if, in the same interval, (#A; — #X\2) is at least Ko
or within [K3, K4|, with K3 < K4 < Ks, with probability greater than 0.95:
P-o.95[[1, —1,0], ([K3, K4l, [K2,00])]jt, 1,]- Equivalently, instead of writing B, we
write directly the linear combination it defines. For example, in the latter case
we have P>0,95[(#>\1 - #)\2), ([Kg, K4], [KQ, OO])][tj,tk]-

Semantics. Given a CRN C = (A, R) with initial configuration z¢ in a system of
fixed volumetric factor N, its stochastic behaviour is described by the CTMC XV
of Definition 1. We define a path of CTMC X% as a sequence w = xot1z1t1Z2...
where x; is a state and ¢; € Ry is the time spent in the state x;. A path is
finite if there is a state xj that is absorbing. w ® t is the state of the path at
time t. Path(X",zg) is the set of all (finite and infinite) paths of the CTMC
starting in xy. We work with the standard probability measure Prob over paths
Path(X",z0) defined using cylinder sets [11].
We first define when a path w satisfies (B, ) at time ¢

w,t):(B,I) ~ 3[117u1]61l1§3(w®t)§u2
Note that B(w ®t1) is well defined because w @t € NIl . For 5 formulas we have

XNz = Pop[B, I, +,) <+ Problwe Path(XN, zo)|w,t = (B,I),t € [t1,ta]) ~p

XN, 2o | supVo Bl i) ¢ sup(C[B(XM)], [t1,t2]) ~ v
XN, zg | infVeo Bl ¢ inf(CIBXN)], [t,ta]) ~ v
XN 2o | supEy[Bliy 1) ¢ sup(B[B(XY)], [t t]) ~ v
XN 2o EinfEwy[Bl ) < inf(E[B(X™)],[t1,t2]) ~ v

XN,SUO ':771/\772 < XN,CCO ':771/\XN,ZL'0 ':772
XN aoEmvn < XNaoEm VXN zoEmn

inf(-,[t1,t2]) and sup(-, [t1,t2]) respectively denote the infimum and supremum
within [t1,2s]. Prob(w € Path(XN,zo) |w,t |= (B,I),t € [t,t3]) is the proba-
bility that the linear combination defined by B falls within I at a time instant
t between t; and ¢, and is well defined since the probability measure Prob on
Path(XN  z0) corresponds to transient probability calculated using the CME.



4.1 LNA-based Approximate Model Checking for CRNs

Stochastic model checking of CRNs is usually achieved by transient analysis
of the CTMC XV [11], which involves solving the CME and thus suffers from
the state-space explosion problem. We propose an approximate model checking
algorithm based on LNA. The inputs are a SEL formula 7, the stochastic process
XN induced by the CRN and initial state zy. The output is true in case the
formula is verified, and otherwise false.

The algorithm proceeds by induction on the structure of formula 7, succes-
sively computing whether each subformula is satisfied or not. We assume that
Eqn (5) and (6) are solved numerically where X' is the finite set of sample points
on which their solution is defined and that ¢q, initial time, and ¢,,,,, final time,
are always sampling points.

Probabilistic operator. To evaluate P, [(B, I )]}, +,] We construct the func-
tion Probg,1(t) = Oy~ g r(ti) for t € [ti, tig1),ts,tip1 € X (alternatively, can
be constructed as the interpolation of the values of 2y~ g ; over X' points).

Lemma 1. Probg ) is integrable on Rxg.

Theorem 2 guarantees the pointwise correctness of Prob g 1) and its integrability
allows us to compute the following approximation, then compare to threshold p

to decide the truth value. If t5 # t; then Prob(w € Path(zg)|w,t | (B,I),t €
[t1,t2]) =~ t;tl :12 Probp ;(t)dt else if t1 = to Prob(w € Path(zg)|w,t1 =
(B, I)) ~ P’l"ObBﬁj(tl).

Expectation and variance operators. To evaluate sup(C[B(X™)], [t1,12]),
inf(CIBXM), [t1,t2)), sup(E[B(X™)], [t1,t2]) and inf (E[BXN)], i1, 15]) we
use the LNA, namely, compute the expected value and variance of Eqn (8) and
(7). Theorem 3 guarantees the quality of the approximation. We can now com-

pute the following approximations, then compare to the threshold v:

sup(C[B(X™M)], [t1, t2]) = maz{C[BY N (t)] | (tr € DAty < tp < t2)V(tk € Ly, 1))}

inf(C[B(X™M)], [t1,t2]) & min{C[BY ™ (t,)] | (tx, € Aty <ty < t2)V(ty € Ly, 1))}

and similarly for the expected value. L, o) = {tilt; € X A ﬂtj € X such that
[ti — tj| < |[t1 — t;|} ensures that for any time interval there is at least one
sampling point, even if the interval is a singleton.

LNA-based model checking can also be used for systems far from the thermo-
dynamic limit, at a cost of some loss of precision. LNA assumes continuous state
space, and it is not possible to justify this assumption for very small popula-
tions. However, if the distributions of interest are not multi-modal and the noise
term is finite and approximated by a Gaussian distribution, then LNA gives very
good approximation even for quite small systems. It is clear that model checking
accuracy increases as N grows. We emphasise that the model checking algorithm
we have presented is also able to handle CRNs whose stochastic semantics is an
infinite CTMC, which occur frequently in biological models.

Complexity of LINA-based approximate model checking. The time
complexity for model checking formula 7 against a CRN C' = (A4, R) is linear



in |n|. In the worst case, analysis of a single operator requires the solution of
O(|AJ?) polynomial differential equations for a bounded time. However, an ef-
ficient implementation can solve the O(|A|?) ODEs only once for the interval
[0, tmaz), and then reuse this result for every operator, where t,,,, is the great-
est (finite) time of interest. Note that ODEs are solved in terms of concentrations
(a value between 0 and 1 by convention), ensuring independence of the number
of molecules of each species, although stiffness can slow down the solution of the
LNA.

5 Experimental Results

We implemented the methods in a framework based on Matlab and Java. The
experiments were run on an Intel Dual Core i7 machine with 8 GB of RAM.
To solve the differential equations, we use Matlab oded5, a variable step Runge-
Kutta algorithm. We employ LNA-based model checking for the analysis of three
biological reaction networks: a Phosphorelay Network [5], a Gene Expression
Model [16], and the GW network [3]. For every network, the CRN and parameters
have been taken from the referenced papers. We coded the same CRNs in PRISM
in order to compare accuracy and time of execution with standard uniformisation
of the CME [11] and statistical model checking (SMC) techniques (confidence
interval method) as implemented in PRISM. For the GW case study, we cannot
use global analysis nor SMC, because the state space is too large for direct
analysis, and SMC requires many time-consuming simulations to obtain good
accuracy. An extended set of experiments can be found in [4].

Phosphorelay Network. We consider a three-layer phosphorelay network
whose structure is derived from [5]. Each layer (L1, L2,L3) can be found in
phosphorylate form (L1p, L2p, L3p). We consider the initial condition #L1p =
H#L2p = #L3p = 0, #L1 = #L2p = #L3p = Init, where Init € N. Then we
analyse the ligand B, whose initial condition is #B = 3 x Init. We are interested
in checking the following SEL property:

Pwo7[(#L1p — #L3p), [0, +00]] (0,100 A P>0.08[(#L3p — #L1p), [0, +0](300,600]

which is verified if, in the first interval, the probability that #L1p is greater
than #L3p is > 0.7 and if, between 300 and 600, with probability > 0.98,
#L3p is greater than #L1p. We evaluate this formula in three different initial
conditions, firstly Init = 32 and N = 5000, then Init = 64 and N = 10000,
and finally Init = 100 and N = 15625, so the same concentration but different
numbers of molecules. In all cases, the LNA-based model checking evaluates the
formula as true. To understand the quality of the approximation, we check the
following quantitative formula P—[(#L3p—#L1p, [0, +00])]ir,r for T € [0, 600]
(in our implementation =7 gives the quantity calculated by model checking the
operator). We compare the results with the evaluation of the corresponding CSL
formula using standard uniformisation (Unif) with error 10~7. The following
table shows the results. M axz Err is the maximum error computed by LNA-based



approach compared to standard uniformisation and AvgFErr is the average error;
Time(-) stands for execution time.

Init| Time (LNA) | Time (Unif) | MaxErr | AvgErr
20 0.22 sec 2 min 0.0675 0.0519
32 (0.23 sec 5 min 0.059 0.02

64 |0.26 sec > 2 hr 0.0448 0.0027
10010.3 sec > 2 hr 0.03 0.0011

Note that as Init increases the error of our method decreases, while the execution
time is practically independent of the molecular count. LNA-based algorithms
are faster in all cases. Thus our approach can be used even for quite small
population systems, giving a fast approximate stochastic characterization.

Gene Expression. We consider a simple CRN that models the transcrip-
tion of a gene into an mRNA molecule, and the translation of the latter into
a protein. The CRN, rates and initial conditions are the same as in [16]. The
stochastic semantics of the reaction network is an infinite CTMC, and we use
this model to show that our method can handle infinite state-space processes.
We consider the quantitative property supE_:[#mRN Alir ), which gives the
number of molecules of mRN A in the system at time 7. We compare our method
with SMC estimation of the same property by using 50000 simulations, for
T = {300,600, 900,1200}, and in the following tables we compare the results
in terms of execution time (Time(-)) and expected value of #mRN A estimated
(ExpVal(-)). LNA-based model checking is several orders of magnitude faster
without loss of accuracy.

T Time (LNA) | Time (Simul) | ExpVal (LNA) | ExpVal (Simul)
300 ]0.52 sec 75 sec 100.17 100.14 + 0.1
600 [0.54 sec 198 sec 142.15 142.11 £+ 0.1
900 ]0.54 sec 337 sec 159.73 159.74 + 0.1
1200]0.56 sec 483 sec 167.1 167.1 + 0.1

DNA strand displacement of GW network. GW is a network related
to the G2-M cell cycle switch; under particular initial conditions, it has been
shown that GW can emulate the Approximate Majority algorithm [3]. Here, we
consider the two-domain DNA strand-displacement implementation of GW [2].
The corresponding CRN is composed of 340 species and 240 reactions. For our
analysis the species of interest are R and P, whose initial conditions are # R = 90
and #P = 10; initial conditions of other species are taken from the referenced
papers. We check the property Psg.g[# R — #P, [50, +-00]][6000,35000] for a system
of size N = 45000, which is verified as true in 28 minutes.

6 Concluding Remarks

We presented a novel probabilistic logic for analysing stochastic behaviour of
CRNs and proposed an approximate model checking algorithm based on the LNA



of the CME. We have demonstrated on three non-trivial examples that LNA-
based model checking enables analysis of CRNs with hundreds of species, and
even infinite CTMCs, at a cost of some loss of accuracy. It would be interesting
to find bounds on the approximation error when the system is far from the
thermodynamic limit. However, the error is not only dependent on the value
of N, but also on the structure of the CRN, the rates, and the property. As
future work, we plan to improve the accuracy of the method near critical points
similarly to the approach of [6], and to extend the logic with more expressive
temporal operators. We also intend to release a software tool.
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